

Vishay Semiconductors

Conventions Used in Presenting Technical Data

SYMBOLS AND TERMINOLOGY (alphabetically)

Α	Radiant sensitive area	sr	Steradian
С	Capacitance	Т	Period (duration)
°C	Celsius	Т	Temperature
C_j	Junction capacitance	t	Time
C_k	Coupling capacitance	T_{amb}	Ambient temperature (range)
d	Distance	T _{case}	Case temperature
E_A	Illumination at standard illuminant A	t_d	Delay time
E _e	Irradiance (at a point of a surface)	t _f	Fall time
E_v	Illuminance (at a point of a surface)	T_j	Junction temperature
f	Frequency	$t_{\rm off}$	Turn-off time
l _e	Radiant intensity (of a source in a given direction)	t _{on}	Turn-on time
I _F	Forward current continuous	t_p	Pulse duration
I_{FM}	Peak forward current	t_{pi}	Input pulse duration
I_{OH}	High level output current	t_{po}	Output pulse duration
I_{ph}	Photocurrent (photoelectric current)	t_r	Rise time
I _{ra}	Reverse light current	t_s	Storage time
I_{ro}	Reverse dark current	T_{sd}	Soldering temperature
I_{SD}	Supply current in dark ambient	T_{stg}	Storage temperature range
I_{SH}	Supply current in bright ambient	V_{CEsat}	Collector emitter saturation voltage
I_{V}	Luminous intensity (of a source, in a given direction)	V_{EBO}	Emitter base voltage, open collector
K	Kelvin	V_{ECO}	Emitter collector voltage, open base
lm	Lumen	V_{F}	Forward voltage
lx	Lux	V_{O}	Output voltage
NEP	Noise equivalent power	V_{OH}	Output voltage high
P_{diss}	Power dissipation, general	V_{OL}	Output voltage low
P_{tot}	Total power dissipation	V_{R}	Reverse voltage
PPT	Package peak temperature	V_{S}, V_{CC}	Supply voltage
R_{IO}	Input/output isolation resistor	$\varphi = \alpha/2$	Angle of half sensitivity, angle of half intensity
R_{is}	Isolation resistance	Ψ1/2	Angle of half transmission distance
R_L	Load resistance	λ	Wavelength, general
R_{thJA}	Thermal resistance, junction-to-ambient	$\lambda_{0.5}$	Range of spectral bandwidth (50 %)
R_{thJC}	Thermal resistance, junction-to-case	λ_p	Wavelength of peak sensitivity or peak emission
S	Sensitivity, absolute	$\Delta\lambda$	Spectral half bandwidth
$s(\lambda)$	Absolute spectral sensitivity at a wavelength $\boldsymbol{\lambda}$	Φ_{e}	Radiant flux, radiant power
$s(\lambda)_{rel}$	Spectral sensitivity, relative	Ω	Solid angle
$s(\lambda_0)$	Spectral sensitivity at a reference wavelength $\boldsymbol{\lambda}_0$		
$s(\lambda_p)$	Spectral sensitivity at a reference wavelength $\boldsymbol{\lambda}_p$		